Growing From a Reckless
Bughunter to a Stakeholder
Conversationalist

EuroSTAR ‘ HFesconfs

rikard.edgren@learningwell.se

Earning Respect

find valuable information

www.eurostarsoftwaretesting.com B | #esconfs

testing is never better than
the communication of the results

www.eurostarsoftwaretesting.com @EUTO STAR

Software Testing Conference

#esconfs

Story: My Biggest Mistake

* 30 bugs!

www.eurostarsoftwaretesting.com @ gglgmsgléeﬁ ‘ #esconfs

understand your testing mission

www.eurostarsoftwaretesting.com @EUTO STAR

Software Testing Conference

#esconfs

www.context-driven-testing.com

The Seven Basic Principles of the Context-Driven School

The value of any practice depends on its context.

There are good practices in context, but there are no best practices.

People, working together, are the most important part of any project’s context.
Projects unfold over time in ways that are often not predictable.

The product is a solution. If the problem isn't solved, the product doesn’t work.
Good software testing is a challenging intellectual process.

N o un kA wh =

Only through judgment and skill, exercised cooperatively throughout the entire project,
are we able to do the right things at the right times to effectively test our products.

www.eurostarsoftwaretesting.com @EUTO STAR

Software Testing Conference

#esconfs

James Bach’s Implicit Principles

Context Primacy: Context is not inert scenery, it embodies vital information, resources, constraints, and
other agents that must inform all competent work.

Scientific Aspiration: Folklore is not a basis for a respectable craft. Our work is informed by evidence,
cleaned and tempered by skepticism and vigorous debate. Community status is accumulated through
demonstrated and demonstrable merit. We avoid groundless and exaggerated claims.

Systems Non-Linearity: Our systems are not practically predictable or reducible in terms of linear or
statistical equations. We must use non-linear, cybernetic control methods, and learn to live with
uncertainty.

Testing as Investigation: Testing is not just fact checking and it is not quality improvement. It is an
open-ended investigation and learning process focused on discovering problems.

Humanist Sensibility: Technical workers are not interchangeable resources. All technical work is done
by unique, unreliable people, and to be good at technical work we must develop as people.

Tester Autonomy: We are not robots or slaves: we have agency. We manage the value of our time and
bear responsibility for doing ethical work. We must cultivate the courage to do that.

Tester Responsibility: We are not alone. We work within a social network in which value is constructed
and responsibility is shared. This happens on project, corporate, professional, and societal levels.
Methodology Authorship: Ignorantly mimicking behavior is not competent work. Competent testers
must design (or adapt) and test their own practices and heuristics.

Skill Development: Technical work is not brute labor. Methodology skill , in both tacit and explicit form,
is absolutely required to fulfill our mission, and development of such skill is an ongoing obligation.

The Poster Story

* 2009 - 2010

e Rikard Edgren, Martin Jansson and Henrik Emilsson
* Avery long list with software quality characteristics

www.eurostarsoftwaretesting.com

Software Testing Con

Software Quallty Chara cteristics IT-bility. Is the product easy to install, maintain and support?

o through the list and think about your product/festures, Add specifies f N s - System requirements: ability to run on supported configurations, and handle different environments or missing components,

Ca bility. Can th Tl luablk ? ogs . . .
e sty s eomeor st s e e | 1T-boility. Is the product easy to install, maintain and support?

-Aoc;rrucy any um:pm: or calculation in the product is correct and presentey

- Intey

=4 Capability. Can the product perform valuable functions?

- Datd
- Extel
Reliability. C
- Stability: the pro
- Robusiness: the p

tifacts easy to maintain and support for customers?
ed product be tested by the customer?

e product interact with software and environments?
—— TR The used with appli jons of hardware components,

Compatlblllty How well does the product interact with software and environments?

ing modes, ing,
jtions, laws or ethics.

Usability. Is the product easy to use?

- Affardance: product invites to discover possibilities of the produ
e e s tod Supportability. Can customers’ usage an d problems be supported?
lizy: it is fast and easy to learn how to use the product.

- Memorability: once you have learnt how to do something you dont forget e
= o atian sad eanabiis " TN S

T T I T T T T
- Debuggmg can you obhserve the internal states of the software when needed?
- Versatiligy: ability to use the product in more ways than it was originally designed for.

=1 Usability. /s the product easy to use? [Testability. isieasytocheck and test the product?

- Traceability: the product logs actions at appropriate levels and in usable format.
- Controllability: ability to independently set states, objects or variables.

- Errors: there are mformative EITOT Mes5ages, icult to make Kes5 and easy to repair after
- Consistency: behavior is the same throughout the product, and there is one look & feel.

- Tailorability: default settin| d behavi, be ified for flexibility. HH .

-dececiiy o produs < pesl touse oy pople s pose nd meesppicae sce] - J@Stability. /s it easy to check and test the product?

- Documentation: there is a Help that helps, and matches the functionality.

Charisma. Does the product have “it"? - Information: abll.\tyfor testers to learn what needs to be learned...
- ility- can the product and its creation be validated?

ng them.

- Sarid Maintainability. Can the product be maintained and extended at low cost?

| Cha risma. Does the product have "it"? - ey the sbilty o chnge the roduct s requised by cutomes.

- Attry - Extensibility: will it be easy to add features in the future?

- Cu =
- Simplicity: the code is not lex th ded, and does ot obscure test tion and evaluati
- Entraneement: do users get hoaled, have fun, in a flow, and fully engaged when using the product? Simplicizy: the ca ’5 e s e esign, execution and evaluation.

- Hype: should the product use the latest
i e e [Mlaintainability. Can the product be maintained and extended at low cost?
- Story: are there ing stories abi

Secunt} Does the product protect against unwanted usage?

Portability. Is transferring of the product to different environments enabled?

Jt a different environment?

Securlty Does the product protect against unwanted usage? [or o sanderas

et the needs of the targeted culture /country?
- User Interface-robustness: will the product look equally geod when translated?

- Virus-free: produ

- Piraey B Portablllty Is transfer of the product to other environments and languages enabled?

Performance
- Capacity: the many limits of the product, for different circumstances (e.g. slow network)

This work is licensed under the Creative Commons Attribution-No Derivative License
inspired by James Bach’s CRUSSPIC STMPL, IS0 9126-1, Wikipedia:liities and more...

- Respurce Utilization: appropriate usage of memol

Performance. Is the product fast enough?

storage and other resources,

- Sm.abl ity hu\vwe]l does the product scale up, out or down?

| http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf |

http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf

The Poster Story
e 2009 - 2010

www.eurostarsoftwaretesting.com @ Euro Slé@!ﬁ ‘ #esconfs

Software Testing

Working with Quality Characteristi

e very easy to get something good-looking
* happily accepted, but not anchored
e driven by only a part of context, me...

* Still a good list though, especially for generating test
ideas

* Now: start with blank paper; quality in customer’s words
www.eurostarsoftwaretesting.com @E}W{!‘g WS;!;A@%

' | - -~ f ~
HEeSsConts

Story: The Conversationalist

 more talking than testing nowadays

* information pull over information push
e get heard by adjusting the language

www.eurostarsoftwaretesting.com @ EUTO S;';’ére!i ‘ #esconfs

Software Testing

A Few Tips

* most people are very occupied, make them important
* understand the information objectives, by listening
e explore what is important

e ask follow-up questions
e act on answers!

www.eurostarsoftwaretesting.com oDt

testing is simple: you understand
what is important, and you test it

www.eurostarsoftwaretesting.com @EUTO STAR

Software Testing Conference

#esconfs

Explaining the testing

 why are we testing?
* why is the test strategy good?

e your stakeholders are decision-makers

CEuroSTAR

Software Testing Conference

#esconfs

www.eurostarsoftwaretesting.com

the communication of the test results are seldom
better than the anchoring of the test strategy

www.eurostarsoftwaretesting.com @EUTO STAR

Software Testing Conference

#esconfs

Exercise: 30 seconds

* Team up in pairs.
* Explain the benefits of your test strategy in 30 seconds.

www.eurostarsoftwaretesting.com @ EUTO STAR #esconfs

Software Testing Conference

it’s not only the testing,
it’s how you talk about it

www.eurostarsoftwaretesting.com @EUTO STAR

Software Testing Conference

#esconfs

Conclusions

e understand your testing mission
e find out what is important
e communicate with good words

#esconfs

www.eurostarsoftwaretesting.com @EUTO STAR

Software Testing Conference

Questions

* who should you talk to?
* what will you tell?

* what will you ask?

www.eurostarsoftwaretesting.com @EUTO STAR

Software Testing Conference

#esconfs

