
Test Strategy – Next Level

Rikard Edgren
rikard.edgren@learningwell.se

Test strategy – Barnum Example

We will test the new functionality as deep as possible, and the old

functionality more briefly.

We will primarily use specifications and up-to-date risk analysis.

As time permits, we will create automated regression tests.

Results will be reported continuously.

The problem with this strategy is that it is too general, and says

virtually nothing.

Your strategy needs details to be useful.

Exercise: Your test strategy

the obvious quality characteristics how testers think

testing mission risks not included

stakeholders testers challenges

test methods test levels/test phases priorities

oracles motivations logistics

information sources test ideas explanations

models test tools reporting

Goals for ”Next Level”

More awareness of your implicit test strategies

More mental tools for diversified strategies

Ability to communicate the test strategy

Agenda

Your test strategy decides how good your testing will be.

But first, we need to cover how to get there:

1. Testing Mission

2. Product Analysis

3. Information Sources

4. Quality Characteristics

5. Project Environment

6. Test Strategies

Different testing missions

Different missions lead to different testing.

…similar goals

Testing Mission

If you don’t know what value testing brings, it is very difficult to do

good testing (My Biggest Testing Mistake)

Definition: Testing mission is the answer to Why do we test?

The mission is given by people, do you know who they are?

Really bad example:

The test department is responsible for testing the product

Vague examples:

Contribute by finding important problems

Provide quality-related information (decision support)

Better Mission Example

Documented missions for an off-the-shelf software:

Find problems we want to fix before release

Provide information for release decisions

Un-documented testing missions:

Fast feedback to developers and product owners, so they can move faster

Identify easy, yet valuable enhancements

Verify that product meets promised accessibility standard

Inform project manager about risk status

The importance of these missions changed over time.

The first mission: ”find important problems” was always the most

important, and it usually is.

The “so” trick

When you have a vague mission, like

test the product

Add ”so” and add details:

so we can find important problems

Perhaps once more:

so they can be addressed to get happier customers and fewer support

calls

Then you are closing in on a meaningful mission, where stakeholders

can add more information:

so we can take well-informed decisions,

so product risks have been explored, so we don’t get unpleasant

surprises

Also try small additions like ”even if”, ”unless”, ”exampled by” etc.

Words requiring investigations

Important problems can be elaborated with examples:

Patches

Complaints

Bad reviews

Embarassments

Bugs

Or by guidelines

Quality objectives

Error catalogue

Checklists

Requirements

Case studies

Standards

Conversations often works best to really understand.

Identify objectives & information needs

Who are the stakeholders?

Project owner(s)?

Customers/users?

Project members?

Hidden stakeholders?

What objectives do these stakeholders have?

These objectives should guide the project, and meeting them probably means a

successful project.

What information

are these stakeholders in need of or interested in?

can testing provide the project with?

can help us in order to meet the objectives?

What does ”important problems”, ”quality”, ”risks” mean to them?

Detailed testing missions

It can be very good with detailed testing missions:

Investigate if web site can handle expected load for Christmas

Try to find security problems for login and user accounts

We can’t afford any more support calls regarding incorrectly filled forms; test error

handling and clarity for Grandma

But,

Details might obscure the whole picture and what’s most important

What you say you want, might not be what you need

Exercise: Your stakeholders

Who are your most important stakeholders?

Write their names!

Talk to them when you get back to work

What do they value?

What are they afraid of?

Product Analysis - SFDIPOT modeling

A great framework for getting structure to your understanding of a

product is to use SFDIPOT from James Bach’s Heuristic Test Strategy

Model.

Structure – what the product is

Functions – what the product does

Data – what the product operates on

Interfaces – how you interact with the product

Platform – the environment the product depends on

Operations – what the users want to accomplish

Time – relations between the product and time

These guidewords structure your thinking, and give better breadth.

But you still have to do all the work yourself…

http://www.satisfice.com/tools/htsm.pdf

Product Analysis Example

An SFDIPOT model can be thorough and time-consuming,

but also fast to get an overview.

Let’s do one together for a product of your choice.

Structure – what the product is

Functions – what the product does

Data – what the product operates on

Interfaces – how you interact with the product

Platform – the environment the product depends on

Operations – what the users want to accomplish

Time – relations between the product and time

Many Information Sources

The reason you should learn and use many information sources is
simply that one isn’t enough.

Requirements only –> confirmations

Yourself -> opinions

Using and choosing wisely will help design a test strategy that
have the chance of finding important information.

Essence of Testing: find out what's important, and test it

P
R
O
D
U
C
T

1. Capabilities – requirements, examples et.al.

2. Failure Modes – “what if…” - question everything

3. Models – many, if invisible models count

4. Data – exploit dependencies

5. Surroundings – environment / granularity

6. White Box – developer perspective + tester mindset

7. Product History – error catalogues

8. Rumors – kill them or prove them right

9. Actual Software – gulp your Pommac

10. Technologies – things that tend to go wrong

11. Competitors – also in-house, analogue solutions

Sources For Test Ideas

B
U
SI
N
ES
S

12. Purpose – benevolent start

13. Business Objectives – product vision, value drivers

14. Product Image – what should/would users think?

15. Business Knowledge – learn, or co-operate

16. Legal Aspects – what must be avoided?

17. Creative Ideas –products worth building are unique

18. Internal Collections – product-specific quicktests

19. You – you are a user, you matter

Sources For Test Ideas

TE
A
M

Exercise: Your Information Sources

Write down one or two actual sources of information that improved

your test strategy (do not use requirements!)

Example:

I was about to do automated testing for a health care journal system.

So I asked nurses that were responsible for regression testing:

What is risky?

What is boring?

What is difficult?

P
R
O
JE
C
T

20. Project Background – what happened last time?

21. Information Objectives – the purposes of testing

22. Project Risks – test risky areas early

23. Test Artifacts – other’s testing

24. Debt – test against shortcuts

25. Conversations – people talk and collaborate

26. Context Analysis – what should effect your testing?

27. Many Deliverables – test objects and/or inspiration

28. Tools – a starting point for exploration

Sources For Test Ideas

ST
A
K
EH

O
LD

ER
S

29. Quality Characteristics – in the back of your head

30. Product Fears – capture stakeholder’s worries

31. Usage Scenarios – what people want to do

32. Field Information – environment, needs, feelings

33. Users – some we like, some we don’t like

34. Public Collections – Appendix, Cheat Sheet, Not Done

35. Standards – read, understand, use…

36. References – as oracle and inspiration

37. Searching – Altavista, Volunia et.al.

Sources For Test Ideas

EX
TE
R
N
A
L

Capabilities

Failure Mode

Models

Data

Surroundings

White-

box

Product History

Actual software

Technologies

Competitors

Purpose

Image

Business

Knowledge

Legal

aspects

Creative Ideas

Internal

Collections

You

Project

Background

Information

Objectives

Risks

Test Artifacts

Debt

Conversations

Context Analysis

Many

Deliverables

Tools

Quality Characteristics

Fears

Usage

Scenarios

Field Information

Users

Public

Collections

Standards

References

Searching

Homework: Information Sources

Go through the 37 sources, and for each one, ask yourself:

Should we use this one?

Do we already have it?

Should we get more information?

http://thetesteye.com/posters/TheTestEye_SourcesForTestIdeas.pdf

http://thetesteye.com/posters/TheTestEye_SourcesForTestIdeas.pdf

Test Analysis Questions

Yes, we have all of these, but what should we do with them?

Understand, and use as appropriate

Some become straightforward test ideas

Some need a lot of elaborations

Some make other tests richer

We don’t even have time to do the requirements-based tests; how
should we have time for all of these?

Judgment, some of these give more important information

skip the existing tests someone (you?) already has run

try a few that looks promising

change the ways you test from time to time

Quality Characteristics

The reason you should learn more about this is

to understand what’s important about your software

to quickly generate risk-based strategie and test ideas

for better communication

Definition: Quality characteristics describe desirable attributes of the

system.

Bad example: Usability is top priority

Better example: Important customers use this software frequently, so

common operations needs to be very fast. (Operability)

Capability. Can the product perform valuable functions?

Reliability. Can you trust the product in many and difficult situations?

Usability. Is the product easy to use?

Charisma. Does the product have "it"?

Security. Does the product protect against unwanted usage?

Performance. Is the product fast enough?

IT-bility. Is the product easy to install, maintain and support?

Compatibility. How well does the product interact with software and environments?

Supportability. Can customers’ usage and problems be supported?

Testability. Is it easy to check and test the product?

Maintainability. Can the product be maintained and extended at low cost?

Portability. Is transferring of the product to
different environments and languages enabled?

http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf

http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf

Strategy examples: Reliability

Can you trust the product in many and difficult situations?

Stability: develop a semi-realistic robot that can exercise the product

over weekends…

Data Integrity: …with random data and built-in data integrity validation.

Robustness/Stress handling: push the product’s important limits…

Recoverability: …and investigate how well it recovers after (provoked)

failures.

Safety: perform aggressive risk-based testing to see if the ZYX might

damage people under special circumstances.

Project environment

James Bach’s CIDTESTD – Project environment

Customers – anyone who is a client of the test project

Information – about the product/project that is needed for the testing

Developer Relations – how you get along with the programmers

Test Team – anyone who will perform or support testing

Equipment & Tools – hardware, software, or documents required to administer testing

Schedule – The sequence, duration, and synchronization of project events

Test Items – the product to be tested

Deliverables – the observable products of the test project

The more you know about the project environment, the easier it is to

develop efficient test strategies.

From Bach’s HTSM

Test Strategy

Test strategy contains the ideas that guide your testing effort;

and deals with what to test, and how to do it.
(Some people mean test plan or test process, which is unfortunate…)

It is in the combination of WHAT and HOW you find the real strategy.

If you separate the WHAT and the HOW, it becomes general and quite useless.

There is always a strategy, but seldom communicated

It is not written in order to show how smart you are, it is written to

communicate your ideas to (at least) two audiences:

Stakeholders

Testers

Your unique test strategy

Every situation requires a unique test strategy.

You always have one, even though it isn’t documented.

A good test strategy is

specific – details rather than fluff

practical – possible to execute with “normal” turbulence

justified – reaches the testing missions

diverse – important systems needs to be tested in many different ways

resource efficient – uses available resources without (too much) waste

reviewable – possible to understand and review, so it focus on right things

anchored – in management, in testers

changeable – to be able to deal with the unevitable unknown

erroneous – if it isn’t “incorrect”, it is too vague, or took too long time to write

It is better to test pretty well in many ways, than perfect in one or two.

[#283, Lessons Learned in Software Testing]

Test Strategy Example

Most important with ROPA is to help fire departments make good decisions regarding resource

management. Central to this is the calculations of driving times, and accident coverage.

We will model the product by requirements, user interface and manual, to use for basic testing of

functionality.

Since ROPA doesn’t offer support it is important to review the user documentation, and make sure

error handling and other information actually helps the users.

To test ROPA in a realistic way, we will use complex scenarios that also investigate reliability and

usability.

As a a complement, risk-based testing will be performed against secrecy, installation and data

integrity (look carefully at database transactions, and visually analyze the content.)

As the product hasn’t previously been tested by ”testing professionals”, a list of bugs is an important

deliverable (there exists a list of 10 known issues that we will investigate at once.)

To facilitate future testing, the testers should give guidelines for testability improvements, e.g.

programmatic interfaces that allow automatic regression testing of calculations.

Challenge: Currently we have no really good oracle (except sanity and Google Maps) to decide

whether the driving times are accurate.

Example of test strategy activities

These ”test strategies” were used at a product company:
Unit testing: 75% code coverage for new code

Automated regression testing of API

Automated regression testing of selected bugs

Manual Smoke Pass (once a month)

Automated Smoke Pass (every day)

Detailed test cases, at least one for each requirement

Vague test cases, at least one for each requirement

Session-based exploratory testing (on chosen risks)

Totally free testing (Brolin-role)

Scenario testing with several people, scenario created on-the-fly

Security testing (without being penetration experts)

Performance testing with inhouse framework

Investigation of interesting/important support incidents

Usability testing with students

User testing with focus group (real users)

Acceptance testing by product owner

A lot of installation/upgrade testing…

Verification of fixed bugs, and testing for side-effects

Code review of sensitive parts

Test code right after it has been written

Aspects of test strategies

the obvious

testing mission

stakeholders

test methods

oracles

information sources

models

quality characteristics

risks

testers

test levels/test phases

motivations

test ideas

test tools

how testers think

not included

challenges

priorities

logistics

explanations

reporting

Product and project risks

Product risks

Found everywhere in today’s material

Especially in Quality Characteristics

Has a 90’s feeling to me, but there is nothing wrong with a risk-centered strategy

Project risks

Why won’t your strategy work?

Found in details

Found in Project Environment

As with everything else, it is in the details and your understanding…

General testing techniques

Function testing – test that each function does with it’s supposed to

Risk-based testing – try to provoke important risks (deal with probablility afterwards)

Specification-based testing – use product claims (not necessarily a specification) and see

if they hold.

Scenario testing – test longer sequences, with complexity for sequence order, users, data

and/or environment.

Model-based testning – test from states, architecture, flows or custom models.

Quality objective-based testing – Each quality characteristic can be used as a testing

method, e.g. performance, security, usability, compatibility (plus sub-categories.)

High volume testing – Run an awful amount of tests to evaluate stability, use of ”all”

data, see patterns etc.

Domain testing – Choose data from equivalence groups, boundary values, or best

representatives.

User testing – Let (simulated) users perform tasks.

Testing without flourishes– You know what to test, and do it.

Manual/Automated/Exploratory/Scripted are orthogonal.

Exercise: FizzBuzz Test Strategy

This program is an exercise for software testers.

http://www.thetesteye.com/code/FizzBuzz.rb

http://www.thetesteye.com/code/FizzBuzz.exe.zip (Windows only)

As input it takes an integer between 1 and 1000, and repeats it as

output.

If the number is a multiple of three, it should print "Fizz" instead of the

number and for the multiples of five print "Buzz".

For numbers which are multiples of both three and five it should give

"FizzBuzz" as output.

Your testing mission is to find any threats to this software being a

useful testing exercise for testers around the world.

What would be a good test strategy?

http://www.thetesteye.com/code/FizzBuzz.rb
http://www.thetesteye.com/code/FizzBuzz.exe.zip

FizzBuzz Test Strategy

I want to perform the testing I think testers will do.

a. I would start by executing and getting a feel of it. Usability aspects will be evaluated, as

well as noting interesting behavior.

b. I would do manual samples of fizz, buzz, fizzbuzz, number, too high, negative, way too

high, too much input, strings, special words (fizz, ruby, null)

c. I would proof-read all text, including log file

d. Pay a lot of attention to testability, especially test the content of log file

e. I would review the code

f. I would get a handful of testers to do the exercise to see how useful, and inspiring it is

g. Hopefully these testers have diverse platforms, but some additional operating systems

and Ruby versions should also be tested.

h. I would write my own program that produces the same output, to check that all 1000

values are correct. Tests correctness, stability, endurance, and is a bit of fun as well.

Feed these values into unit tests. (I have two examples of this; one with AutoHotkey, and

one with Ruby unit tests.)

i. I would run many inputs with AutoHotkey, both valid and invalid, to see endurance and

robustness.

j. I would try to talk to someone knowledgable to make sure the requirements are good,

and correctly understood by me.

Tying things together

There are many things that are important, and many ways to test them.

Some testing activities will cover many important aspects.

Some important aspects require several testing activities.

You don’t know the details of the HOWs, but you can communicate

them at an appropriate level.

You might also include WHY, also for marketing purposes.

Anchored in…

Situation

Test what is demanded by the context.

Management

Test to get the information others need.

Testers

Make sure testers know where you are aiming, and why.

At the same time adjustable, since things always change…

Always with a flavor of…

…risk judgment

So you focus on what’s most important

…test design

Continuously jot down fruitful test ideas

…communication

So stakeholders get the information they need

So testing can be improved

Testing is never better than the communication of the results

Exercise: Specific test strategy

Team up.

Choose one of your stakeholders from previous exercise.

Design a test strategy that will generate the information that this

specific person needs.

(Yes, this is not how we do it in reality, but you should practice this, it’s

about focusing on information objectives.)

Homework: Diversified test strategy

Team up.

Come up with plenty of different ways to test your product.

Suspend judgment until you run out of ideas.

Test Strategy Bias

Answering an easier question

Dodging the most important questions

What you see is all there is (WYSIATI)

What are others doing?

Halo effect

Don’t judge by single observations

Illusion of validity

Does one good example justify a test method?

Optimistic bias

Downhills, sun and wind in the back?

Focusing illusion

It gets more important when you think about it

You can’t avoid bias, but you can manage it.

Inspired by Kahneman

Test Strategy QA

Review & Conversations

Re-visit Quality Characteristics and stakeholder needs

Does the strategy cover what you actually do/want to do?

Ask yourself (honestly):

What will be praised?

What would the worst critic say?

Results

When you have developed an anchored test strategy,

you have learned a lot.

You have many ideas about what to test, and how.

You have a starting point for reporting.

You have stakeholders agreeing what you are up to.

If you think you have a reporting problem,

I suspect it’s really about test strategy

communication.

Exercise: 30 seconds

Team up in pairs.

Explain your current, real-world strategy in 30 seconds.

Don’t talk too fast, focus on the most important and challenging parts.

Exercise: 90 seconds

Team up in pairs.

Explain your current, real-world strategy in 90 seconds.

Don’t talk too fast, focus on the most important and challenging parts.

Summary test strategy

Test strategy is hard; but you will use it all the time when you test.

If it is easy, you probably know too little

The more you learn, the better your test strategy will be.

You will get a good start if you find out about your testing, mission,

project environment, product elements, information sources and

quality characteristics.

The first test strategy in the project is far from perfect.

That is why you should modify and change your strategy whenever you

learn more, and when the context changes.

Questions

???

Further reading:

Bach: Heuristic Test Strategy Model
http://www.testingeducation.org/BBST/foundations/Bach_satisfice-tsm-4p-1.pdf

Kaner, Bach, Pettichord: Lessons Learned in Software Testing

Edgren: The Little Black Book on Test Design
http://www.thetesteye.com/papers/TheLittleBlackBookOnTestDesign.pdf

Edgren: Den lilla svarta om teststrategi (in Swedish)
http://www.thetesteye.com/papers/DenLillaSvartaOmTeststrategi.pdf

www.thetesteye.com rikard.edgren@learningwell.se

http://www.testingeducation.org/BBST/foundations/Bach_satisfice-tsm-4p-1.pdf
http://www.thetesteye.com/papers/TheLittleBlackBookOnTestDesign.pdf
http://www.thetesteye.com/papers/DenLillaSvartaOmTeststrategi.pdf
http://www.thetesteye.com/
mailto:rikard.edgren@learningwell.se

